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Self-similar solidification: morphological stability of the regime
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Abstract

The morphological instability analysis is carried out for non-stationary solidification of a binary melt. We dem-

onstrate that both the morphological and dynamic neutral stability curves coincide. The neutral stability curve for

morphological perturbations does not intersect the self-similar branch of solutions for solidification, that is, the

morphological instability does not cause the mushy zone origination whereas the constitutional supercooling arising

ahead of the stable planar front solidifying in self-similar manner is a reasonable criterion for the mushy region in-

cipience. The theory under consideration is in a good agreement with experimental and numerical studies carried out by

Huppert and Worster.

� 2003 Elsevier Ltd. All rights reserved.
1. Introduction

It is well-known that the planar solid–liquid interface

may be destroyed by small perturbations in the case

of steady-state solidification scenario [1]. There are va-

riety of situations when crystallization processes proceed

in unsteady state manner. To establish a condition be-

tween physical (alloy properties) and operating para-

meters describing a transition from the planar to mushy

solidification scenario it is required to carry out a mor-

phological instability analysis for non-stationary solidi-

fication. One of the known non-stationary processes is

the self-similar regime when solidification front is far

from the walls of an ingot mold and it is not sensitive to

own prehistory, that is, a relation between the spatial

coordinate and the time of solidification is constant. The

key idea of the present paper is to study a possibility of

planar solidification front break-down due to the con-

stitutional supercooling and/or small morphological

perturbations within a framework of the self-similar

crystallization regime. Coriell with co-authors have

made progress in this matter [2]. They have carried out a

dynamic instability analysis for solidification and melt-
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ing. In other words, their study is devoted to the inst-

ability evolution with zero wavenumber, that is, the

front is perturbed as a whole and its shape is always

planar. Such a situation practically corresponds to per-

turbations in the self-similar rate of solidification.

However, instabilities may be caused by constitu-

tional supercooling which leads to favorable conditions

for the growth of occasional solid ridges into the su-

percooled melt. In this case, the plane morphology is

destroyed and the solid–liquid interface may be mor-

phologically unstable. Moreover, solid phase in the form

of newly born crystals may grow in ambient supercooled

zone ahead of the front. Taking into account both of

these factors, we characterize a mushy region as a zone

of mixed phases between pure solid and liquid. At pre-

sent, there are a lot of papers describing solidification

and melting with a mushy layer. So, for example, self-

similar behaviour of the mush was studied by Huppert

and Worster [3], Worster [4], Feltham and Worster [5].

From our point of view, in order to study a transition

from the planar to mushy solidification scenario it is

required to take into consideration an influence of a

constitutional supercooling on instability behaviour of

crystallization. Contrary to Ref. [2] and other papers on

this subject where instability analysis was made in some

limiting cases (see Discussion in Ref. [2]), this study is

connected with the morphological instability analysis for

any wavenumbers of perturbations. How to construct a
ed.
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Nomenclature

CL solute concentration in the liquid

C0
L perturbation in the liquid phase concentra-

tion

CLI solute concentration at the front

CLS self-similar concentration in the liquid

CL1 solute concentration at infinity

CS concentration in the solid

C0
S perturbation in the solid phase concentra-

tion

CSS self-similar concentration in the solid

CW concentration at the wall x ¼ 0

DL diffusion coefficient in the liquid

DS diffusion coefficient in the solid

k equilibrium segregation coefficient

K front curvature

KL thermal conductivity in the liquid

KS thermal conductivity in the solid

LV latent heat parameter

m liquidus slope

t time

TL temperature in the liquid

TLS self-similar temperature in the liquid

T 0
L perturbation in the liquid phase temperature

TL1 temperature at infinity

TM phase transition temperature for pure mat-

ter

TS temperature in the solid

T 0
S perturbation in the solid phase temperature

TSS self-similar temperature in the solid

TW temperature at the wall x ¼ 0

x spatial coordinate parallel to the direction of

solidification

X front position

y spatial coordinate perpendicular to the di-

rection of solidification

Greek symbols

C surface tension

D Laplacian

g ¼ x=
ffiffi
t

p
� k self-similar coordinate

jL thermal diffusivity in the liquid

jS thermal diffusivity in the solid

k parabolic growth rate constant

R ¼ X=
ffiffi
t

p
� k self-similar front position

s ¼
ffiffi
t

p
self-similar variable of time
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perturbation theory in self-similar solidification condi-

tions for binary melts is a subject of our subsequent

theory.
2. Self-similar solidification

We treat a unidirectional solidification of a binary

melt along x-axis. The temperatures TS in the solid and

TL in the liquid, and the melt concentrations CS and CL

in these phases are governed by the following equations:

oTS
ot

¼ jSDxyTS;
oCS

ot
¼ DSDxyCS; 0 < x < X ðt; yÞ;

ð1Þ

oTL
ot

¼ jLDxyTL;
oCL

ot
¼ DLDxyCL; x > X ðt; yÞ; ð2Þ

where jS and jL are the thermal diffusivities in the solid

and liquid phases, DS and DL are the diffusion coeffi-

cients; all of which are assumed constant in each phase,

D ¼ o2=ox2 þ o2=oy2 is the Laplacian. In the case of self-

similar regime with a planar front nothing depends on

the spatial coordinate y directed perpendicular to so-

lidification direction.

Further, we make the assumption that the front,

x ¼ X ðt; yÞ, is close to equilibrium, that is,
TS ¼ TL ¼ TM þ mCL þ CTMK; x ¼ X ðt; yÞ: ð3Þ

Here m and TM stand for the liquidus slope and the

phase transition temperature for pure matter, C is the

surface tension. In Section 3, we consider linear insta-

bility analysis which implies that the front shape is

nearly planar due to small non-planar perturbations. In

this case, the front curvature, K, may be also written in

the linear form, that is, K ¼ o2X=oy2.
Heat and solute must be conserved at the front

KS

oTS
ox

� KL

oTL
ox

¼ LV
oX
ot

; x ¼ X ðt; yÞ; ð4Þ

ð1� kÞCL

oX
ot

þ DL

oCL

ox
� DS

oCS

ox
¼ 0;

x ¼ X ðt; yÞ; CS ¼ kCL; ð5Þ

where KS and KL are the thermal conductivities in the

solid and liquid, LV is the latent heat parameter, and k is

the equilibrium segregation coefficient.

Finally, the temperature and concentration fields will

be regarded as known at x ¼ 0 and x ! 1, that is,

TS ¼ TW; CS ¼ CW; x ¼ 0; ð6Þ

TL ! TL1; CL ! CL1; x ! 1: ð7Þ

The second boundary condition in Eq. (6) implies that

the process with the constant concentration CL1 in the
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melt starts from the wall x ¼ 0, that is, X ¼ 0 at the

initial time and the solid phase concentration, CS ¼ CW

at x ¼ 0, produced by crystallization will be CW ¼ kCL1
near the wall x ¼ 0. Strictly speaking, the concentration

CW is not constant with time. However, a relaxation

time of the diffusion field in solids is extremely large and,

as a consequence, CW as well as the solid phase con-

centration profile will be changed over an extremely long

period of time.

Now, let us choose the following self-similar para-

meters

g ¼ xffiffi
t

p � k; Rðy; sÞ ¼ X ðy; tÞffiffi
t

p � k; s ¼
ffiffi
t

p
: ð8Þ

If the solidification regime can be treated as established,

the planar front has the position X ¼ k
ffiffi
t

p
, that is, R ¼ 0.

In this case, all functions depend only on self-similar

variable g. Thus, the parabolic growth rate constant k
determines the self-similar solidification rate dX=dt ¼
k=2

ffiffi
t

p
, whereas time s characterizes deviations from self-

similarity.

Further, let us write down the set (1), (2) supple-

mented by the boundary conditions (3)–(7) in self-simi-

lar variables (8). The result is

s
2

oTS
os

¼ 1

2
ðgþ kÞ oTS

og
þ jS

o2TS
og2

�
þ s2

o2TS
oy2

�
;

� k < g < Rðy; sÞ;

s
2

oCS

os
¼ 1

2
ðgþ kÞ oCS

og
þ DS

o2CS

og2

�
þ s2

o2CS

oy2

�
;

� k < g < Rðy; sÞ;

s
2

oTL
os

¼ 1

2
ðgþ kÞ oTL

og
þ jL

o2TL
og2

�
þ s2

o2TL
oy2

�
;

g > Rðy; sÞ;

s
2

oCL

os
¼ 1

2
ðgþ kÞ oCL

og
þ DL

o2CL

og2

�
þ s2

o2CL

oy2

�
;

g > Rðy; sÞ:

ð9Þ

TL ¼ TS ¼ TM þ mCL þ CTMs
o2Rðy; sÞ

oy2
; g ¼ Rðy; sÞ;

ð10Þ

LV

2
Rðy; sÞ
�

þ kþ s
oRðy; sÞ

os

�
¼ KS

oTS
og

� KL

oTL
og

;

g ¼ Rðy; sÞ; ð11Þ

ð1� kÞCL

2
Rðy; sÞ
�

þ kþ s
oRðy; sÞ

os

�

þ DL

oCL

og
� DS

oCS

og
¼ 0;

CS ¼ kCL; g ¼ Rðy; sÞ:

ð12Þ
Now, conditions (6) and (7) are valid at g ¼ �k and

g ! 1, respectively.

Self-similar solutions TSSðgÞ, CSSðgÞ, TLSðgÞ, CLSðgÞ of
the set above have the forms

TSSðgÞ ¼ TW þ ðTM þ mCLI � TWÞ
erfððgþ kÞ=

ffiffiffiffiffiffiffiffi
4jS

p
Þ

erfðk=
ffiffiffiffiffiffiffiffi
4jS

p
Þ

;

�k < g < 0;

CSSðgÞ ¼ CW þ ðkCLI � CWÞ
erfððgþ kÞ=

ffiffiffiffiffiffiffiffi
4DS

p
Þ

erfðk=
ffiffiffiffiffiffiffiffi
4DS

p
Þ

;

�k < g < 0;

TLSðgÞ ¼ TL1 þ ðTM þ mCLI � TL1Þ erfcððgþ kÞ=
ffiffiffiffiffiffiffiffi
4jL

p
Þ

erfcðk=
ffiffiffiffiffiffiffiffi
4jL

p
Þ

;

g > 0;

CLSðgÞ ¼ CL1 þ ðCLI � CL1Þ erfcððgþ kÞ=
ffiffiffiffiffiffiffiffiffi
4DL

p
Þ

erfcðk=
ffiffiffiffiffiffiffiffiffi
4DL

p
Þ

;

g > 0:

ð13Þ

The distribution CSSðgÞ above is nearly linear function

due to small values of DS. Physically it means that the

process is self-similar and the concentration at the front

is practically unchanged.

Substitution of expressions (13) in the boundary

conditions (10)–(12) at g ¼ 0 gives two relations con-

necting the parabolic growth rate constant k and the

impurity concentration CLI at the planar front depen-

dent on physical and operating parameters. Coriell with

co-authors have deduced similar relations in infinite

domain (see Ref. [6]) and considered some limiting sit-

uations to express k and CLI in approximate forms. Let

us write down only the final result in terms of TW and

CLI:

TWðkÞ

¼TMþmCLI�
kLV

ffiffiffiffiffiffiffiffi
pjS

p
erfðk=

ffiffiffiffiffiffiffiffi
4jS

p
Þ

2KS exp½�k2=4jS�

þKL

ffiffiffiffiffi
jS

p ðTMþmCLI�TL1Þexp½�k2=4jL�erfðk=
ffiffiffiffiffiffiffiffi
4jS

p
Þ

KS

ffiffiffiffiffi
jL

p
exp½�k2=4jS�erfcðk=

ffiffiffiffiffiffiffiffi
4jL

p
Þ

;

ð14Þ

CLIðkÞ ¼ CL1
ffiffiffiffiffiffi
DL

p
exp½

�
� k2=4DL�erfðk=

ffiffiffiffiffiffiffiffi
4DS

p
Þ

þ k
ffiffiffiffiffiffi
DS

p
exp½ � k2=4DS�erfcðk=

ffiffiffiffiffiffiffiffiffi
4DL

p
Þ
�.

ZðkÞ;

ð15Þ

where

ZðkÞ ¼
ffiffiffiffiffiffi
DL

p
exp½�k2=4DL�erfðk=

ffiffiffiffiffiffiffiffi
4DS

p
Þ

þ k
ffiffiffiffiffiffi
DS

p
exp½�k2=4DS�erfcðk=

ffiffiffiffiffiffiffiffiffi
4DL

p
Þ

� ð1� kÞk
ffiffiffi
p

p
erfðk=

ffiffiffiffiffiffiffiffi
4DS

p
Þerfcðk=

ffiffiffiffiffiffiffiffiffi
4DL

p
Þ=2 > 0;

CW ¼ kCL1:



1386 D.V. Alexandrov / International Journal of Heat and Mass Transfer 47 (2004) 1383–1389
Self-similar solidification scenario may be destroyed, for

example, by the constitutional supercooling which ap-

pears if the concentration gradient exceeds the temper-

ature one at the front, that is,

m
dCLS

dg
>

dTLS
dg

; g ¼ 0: ð16Þ

Substituting the self-similar distributions (13) in condi-

tion (16), we get the condition which describes existence

of the constitutional supercooling in the self-similar case

m
ðCLI � CL1Þffiffiffiffiffiffi

DL

p U
kffiffiffiffiffiffiffiffiffi
4DL

p
� �

� TM þ mCLI � TL1ffiffiffiffiffi
jL

p U
kffiffiffiffiffiffiffiffi
4jL

p
� �

< 0; ð17Þ

UðnÞ ¼ exp½�n2�=erfcðnÞ:

Let us now pay our attention to the linear instability

analysis which strongly determines scenario of mor-

phological evolution.
3. Linear analysis of morphological instability

Let us perturb the self-similar temperature and con-

centration profiles (13) as well as the front position

R ¼ 0 as follows:

T 0
S ¼ TS � TSS; C0

S ¼ CS � CSS; T 0
L ¼ TL � TLS;

C0
L ¼ CL � CLS; R ¼ R0:

Practically it means, that the self-similar temperature

and concentration profiles as well as the front velocity

and position get the time and y-dependent small addi-

tions due to different perturbations which always exist in

the system (for example, small oscillations of the tem-

perature field, small mechanical oscillations of the ingot

mold and the like).

Substituting these perturbations in Eq. (9), expand-

ing boundary conditions (10)–(12) in Teylor’s series at

point g ¼ 0, and taking into account only linear terms in

perturbations, we come to

s
2

oT 0
L

os
¼ 1

2
ðgþ kÞ oT

0
L

og
þ jL

o2T 0
L

og2

�
þ s2

o2T 0
L

oy2

�
; g > R;

ð18Þ

with similar forms for the perturbations T 0
S, C

0
S and C0

L

and

T 0
S � T 0

L þ H1ðkÞR0 ¼ 0; H1ðkÞ ¼
dTSS
dg

� dTLS
dg

; g ¼ 0;

ð19Þ

T 0
L � mC0

L þ H2ðkÞR0 � CTMs
o2R0

oy2
¼ 0; g ¼ 0; ð20Þ
KS

oT 0
S

og
� KL

oT 0
L

og
þ H3ðkÞR0 � LV

2
s
oR0

os
¼ 0; g ¼ 0;

ð21Þ

1� k
2

kC0
L þ DL

oC0
L

og
� DS

oC0
S

og
þ H4ðkÞR0

þ 1� k
2

CLSs
oR0

os
¼ 0; g ¼ 0; ð22Þ

C0
S � kC0

L þ H5R
0 ¼ 0; g ¼ 0; ð23Þ

where the following notations are introduced

H2ðkÞ ¼
dTLS
dg

� m
dCLS

dg
;

H3ðkÞ ¼ KS

d2TSS
dg2

� KL

d2TLS
dg2

� LV

2
; g ¼ 0;

H4ðkÞ ¼ DL

d2CLS

dg2
þ 1� k

2
CLS þ

1� k
2

k
dCLS

dg
�DS

d2CSS

dg2
;

g ¼ 0;

H5 ¼
dCSS

dg
� k

dCLS

dg
; g ¼ 0:

Here, for the sake of simplicity, we do not substitute the

self-similar distributions (13). With this object in view,

we write down only the equation for the temperature

perturbations in the liquid.

Let us pay our attention to the neutral stability curve

in a plane of any operating parameters for morpholog-

ical perturbations. In this case, nothing depends on s. As

is seen from Eq. (18) for the liquid temperature pertur-

bations and analogous ones for T 0
S, C

0
L and C0

S as well as

from the boundary conditions above at g ¼ 0, all per-

turbations may be dependent only on y as linear func-

tions, i.e. T 0
L ¼ TL1ðgÞ þ TL2ðgÞy, T 0

S ¼ TS1ðgÞ þ TS2ðgÞy,
C0

L ¼ CL1ðgÞ þ CL2ðgÞy and C0
S ¼ CS1ðgÞ þ CS2ðgÞy. Fur-

ther, substituting these functions in Eq. (18) and anal-

ogous ones for T 0
S, C

0
L and C0

S, we obtain

1

2
ðgþ kÞdT

0
L

dg
þ jL

d2T 0
L

dg2
¼ 0;

1

2
ðgþ kÞdT

0
S

dg
þ jS

d2T 0
S

dg2
¼ 0; ð24Þ

1

2
ðgþ kÞdC

0
L

dg
þ DL

d2C0
L

dg2
¼ 0;

1

2
ðgþ kÞdC

0
S

dg
þ DS

d2C0
S

dg2
¼ 0: ð25Þ

Taking into consideration boundary conditions (6) and

(7) that imply T 0
S ! 0 and C0

S ! 0 as g ! �k; T 0
L ! 0

and C0
L ! 0 as g ! 1, we write down solutions of Eqs.

(24) and (25) at the neutral stability curve in the form

T 0
S ¼ h1erf

gþ kffiffiffiffiffiffiffiffi
4jS

p
� �

; C0
S ¼ h2erf

gþ kffiffiffiffiffiffiffiffi
4DS

p
� �

; ð26Þ
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T 0
L ¼ h3erfc

gþ kffiffiffiffiffiffiffiffi
4jL

p
� �

; C0
L ¼ h4erfc

gþ kffiffiffiffiffiffiffiffiffi
4DL

p
� �

; ð27Þ

h1 ¼ h11 þ h12y; h2 ¼ h21 þ h22y;

h3 ¼ h31 þ h32y; h4 ¼ h41 þ h42y;

where h1, h2, h3 and h4 stand for the perturbation am-

plitudes and h11, h12; h21, h22, h31, h32, h41 and h42 are

arbitrary constants. Let us especially emphasize here

that solutions (26) and (27) satisfy to the boundary

conditions (19)–(23) at the neutral stability curve

(nothing depends on s) only if

R0 ¼ h5 ¼ R1 þ R2y; ð28Þ

where R1 and R2 are constants.

Now, solutions (26)–(28) supplemented by the

boundary conditions (19)–(23) coincide with similar

ones for dynamic perturbations at the neutral stability

curve when nothing depends on y and s (see also Ref.

[2]). The difference is only that amplitudes hi ði ¼ 1; 2;
3; 4; 5Þ are functions of y in the present case of mor-

phological instability analysis whereas these amplitudes

are constants in the case of dynamic instability analysis.

The latter circumstance is not principal due to the fol-

lowing procedure.

Substituting perturbations (26)–(28) into the bound-

ary conditions (19)–(23), we obtain five linear equations

in amplitudes h1, h2, h3, h4 and h5. Equating to zero the

determinant consisting of the amplitude coefficients, we

come to the expression describing the neutral stability

curve (thus, now nothing depends on the amplitudes hi).
However, we will not dwell on this point to save room.

Expressing TWðkÞ from this equation and equating the

result to the right hand side of relation (14), and keeping

in mind relation (15) and the following one CW ¼ kCL1,

one can get a point of intersection of the neutral stability

curve and the self-similar solution (of course, if such

a point exists). Performing a lot of cumbersome and

tedious calculations, we write down this equation in

the final form

kerfc
kffiffiffiffiffiffiffiffiffi
4DL

p
� � ffiffiffiffiffiffi

DS

p

r
e�k2=4DS

 "
þ k
2
erf

kffiffiffiffiffiffiffiffi
4DS

p
� �!

þ erf
kffiffiffiffiffiffiffiffi
4DS

p
� � ffiffiffiffiffiffi

DL

p

r
e�k2=4DL

�
� k

ffiffiffi
p

p

2
ffiffiffiffiffiffi
DL

p erfc
kffiffiffiffiffiffiffiffiffi
4DL

p
� ��#

� KLðmCLI

�
� TL1Þe�k2=4jL

k
ffiffiffi
p

p

2
ffiffiffiffiffi
jL

p erfc
kffiffiffiffiffiffiffiffi
4jL

p
� ���

� e�k2=4jL

�
erf

kffiffiffiffiffiffiffiffi
4jS

p
� ��

pjLerfc
kffiffiffiffiffiffiffiffi
4jL

p
� �� �

� kerf
kffiffiffiffiffiffiffiffi
4jS

p
� ��

ð2jS

ffiffiffiffiffiffiffiffi
pjL

p Þ� e�k2=4jS=ðp ffiffiffiffiffiffiffiffiffiffi
jLjS

p Þ
�

þ T1ðkÞ
�
¼m

T2ðkÞð1� kÞ
2ZðkÞ erf

kffiffiffiffiffiffiffiffi
4DS

p
� �

erfc
kffiffiffiffiffiffiffiffiffi
4DL

p
� �
�CL1
ffiffiffiffiffiffi
DL

p
e�k2=4DL erfc

kffiffiffiffiffiffiffiffiffi
4DL

p
� ���

� kffiffiffiffiffiffiffiffiffi
pDL

p e�k2=4DL

þ k2

2DL

erfc
kffiffiffiffiffiffiffiffiffi
4DL

p
� ��

erf
kffiffiffiffiffiffiffiffi
4DS

p
� ��

erfc
kffiffiffiffiffiffiffiffiffi
4DL

p
� �

þ k
ffiffiffiffiffiffi
DS

p
erfc

kffiffiffiffiffiffiffiffiffi
4DL

p
� �

e�k2=4DS

� 1

�
þ k2

2DS

þ ke�k2=4DS

� ffiffiffiffiffiffiffiffiffi
pDS

p
erf

kffiffiffiffiffiffiffiffi
4DS

p
� �� ���

;

ð29Þ

where the following positive functions are introduced

ðk > 0Þ

T1ðkÞ ¼
LV

4jS

erfc
kffiffiffiffiffiffiffiffi
4jL

p
� �

ð2jS

�
þ k2Þerf kffiffiffiffiffiffiffiffi

4jS

p
� �

þ 2k
ffiffiffiffiffi
jS

p
e�k2=4jS=

ffiffiffi
p

p �
;

T2ðkÞ ¼
KLffiffiffiffiffiffiffiffi
pjL

p e�k2=4jLerf
kffiffiffiffiffiffiffiffi
4jS

p
� �

þ KSffiffiffiffiffiffiffiffi
pjS

p e�k2=4jS erfc
kffiffiffiffiffiffiffiffi
4jL

p
� �

;

and temperatures are measured from the melting point,

that is, TM ¼ 0.

Let us pay our attention to the case of positive k. In
this case, the function

f1ðxÞ � x
ffiffiffi
p

p
erfcðxÞ � e�x2 ;

twice entering on the left hand side of Eq. (29) is always

negative whereas the function

f2ðxÞ � erfcðxÞ � 2xffiffiffi
p

p e�x2 þ 2x2erfcðxÞ;

entering on the right is always positive. Since the liqui-

dus slope in the present study is assumed negative [see

Eq. (3)], it immediately follows that the left hand side of

Eq. (29) is positive and the right one is negative for any

k > 0 and for any physical and operating parameters.

This conclusion is strengthened by the numerical cal-

culations of functions f1ðxÞ and f2ðxÞ as well as of Eq.

(29). In other words, the neutral stability curve does not

intersect the self-similar branch of solutions for solidi-

fication ðk > 0Þ, that is, a transition between morpho-

logically stable and unstable regimes does not exist in

this case. This result is strengthened by numerical cal-

culations carried out in Ref. [2].

Further, setting k ¼ 0 in Eq. (29), it is easy to con-

clude that the latter becomes identity, that is, k ¼ 0 is the

root and, therefore, it divides the stable and unstable

regimes. Similar results were obtained in Ref. [2] for

solidification in infinite domain. However, experiments

[3] and [4] show that the mushy zone appears at certain
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values of parameters. We demonstrate in Fig. 1 the

parabolic growth rate constant k1 � k=2
ffiffiffiffiffiffi
DL

p
as a

function of the temperature T1 � �TW þ mCL1 in ac-

cordance with the self-similar solutions (14) and (15).

The calculations are carried out for the aqueous solution

of sodium nitrate, NaNO3, with k ¼ 0 experimentally

and numerically studied in Refs. [3] and [4]. Thermo-

physical properties of this solution are given in Table 1.

Equating both sides of inequality (17) to each other, we

plot in Fig. 1 the root (point A: k1A � 0:1537 and

T1A � 1:77) which divides the constitutional supercool-

ing regime and the regime when supercooling is absent.

The inequality (17) takes place if k1 > k1A and is not

valid in the opposite case. In other words, if k1 > k1A the

metastable supercooled zone exists while if k1 < k1A
solidification proceeds in accordance with the stable self-

similar manner.

Experiments and computations performed in Ref. [4]

(see also Ref. [3]) show that the morphological insta-

bility occurs (mushy zone originates) if k1 and T1 are

greater than the values of the order 0.15 and 1.72, re-
Fig. 1. The dimensionless parabolic growth rate constant k1 as
a function of the temperature T1 is plotted by solid curve in

accordance with the self-similar solutions (14) and (15). The

constitutional supercooling appears above the point A in ac-

cordance with inequality (17). Experiments [4] show that the

point A is also responsible for the mushy region incipience.

Thermophysical properties of the set are given in Table 1,

CL1 ¼ 14, CW ¼ 0, TL1 ¼ 15 �C.

Table 1

Parameter values of the set NaNO3 +H2O used in calculations [4]

Property

Liquid thermal conductivity KL

Solid thermal conductivity KS

Liquid thermal diffusivity jL

Solid thermal diffusivity jS

Liquid diffusion coefficient DL

Solid diffusion coefficient DS

Latent heat per unit volume LV

Liquidus slope m
Segregation coefficient k
spectively. This means that the latter takes place if

k1 > k1A and T1 > T1A. Moreover, a stable solidification

scenario with the self-similar planar front is revealed in

Ref. [4] for k1 < k1A and T1 < T1A. From the morpho-

logical instability point of view this means that the re-

gion k1 < k1A and T1 < T1A corresponds to the stability

of solidification and the region k1 > k1A and T1 > T1A
characterizes another crystallization regime with a

mushy zone. Strictly speaking, this domain must be

described by a mushy layer model (see, for example, Ref.

[4]) not by a model with the planar front without a

mushy layer. Thus, the constitutional supercooling in-

stead of instability analysis is responsible for the mushy

zone incipience.
4. Concluding remarks

Let us summarize here the main results bearing upon

our theory.

First, we show that the neutral stability curves for

dynamic and morphological instabilities coincide in the

case of self-similar solidification scenario or, strictly

speaking, there is only one neutral stability curve in the

self-similar solidification under consideration.

Secondly, the neutral stability curve and the

self-similar branch of solution are not intersected for

solidification, that is, a transition between stable and

unstable solidification cannot be caused by the mor-

phological instability. Thus, since experiments and nu-

merical calculations [3] and [4] demonstrate absolute

stability for two alloys before a point of constitutional

supercooling, the frontal self-similar solidification re-

gime is absolute stable before this point for all alloys in

the case of any small morphological perturbations.

Thirdly, since such a transition is observed in ex-

periments, it appears due to the influence of constitu-

tional supercooling [3,4]. Namely, our calculations show

that this transition occurs in the point of origination of

the constitutional supercooling and, apparently, the

latter is the reasonable criterion for the mushy zone in-

cipience for solidification in the self-similar manner. In
Value Units

1.3 · 10�3 cal/(cm s �C)
5.3 · 10�3 cal/(cm s �C)
1.3 · 10�3 cm2/s

1.2 · 10�2 cm2/s

1.0 · 10�5 cm2/s

1.0 · 10�9 cm2/s

73.6 cal/cm3

)0.4 �C
0 –
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other words, if the self-similarity is established it is

possible to observe the mushy zone evolution only

within the framework of one of the mushy zone models

and the model with the planar front without a mushy

layer becomes inapplicable (see also Ref. [4]).

Of course, when the solid–liquid interface will be

morphologically unstable (this occurs after the consti-

tutional supercooling origination and the model under

consideration without a mushy region is inapplicable in

this case), the interface may develop in a wavy shape

manner (see, for example, Ref. [3] where the picture of

such a behavior is demonstrated). Further growth of the

instability in the framework of a mushy zone model with

the constitutional supercooling may lead to dendrites

and new solid crystals nucleating ahead of the solid-

mushy zone interface [3,4]. This stage of solidification

was experimentally and numerically studied in details in

previous works [3] and [4] and is not a subject of the

present study.

Finally, apparently, the model under consideration

is not quite adequate in the case of melting because

the concentration distribution in the solid is a function

dependent of the prehistory of solidification of an in-

got and is not a function of solution. Therefore, the

phase transition temperature depending on the solute

distribution in the solid is also a given parameter

which does not depend on an unknown concentration

at the front as in the case of solidification. Therefore,

the self-similar instability for melting must be studied

on the basis of a model with a given solute distribu-

tion in the solid.
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